STAT0041: Stochastic Calculus

Lecture 10 - Properties of Itô Integral

Lecturer: Weichen Zhao

Key concepts:

- Itô isometry;
- martingale property of Itô integral.

10.1 Basic Properties of Itô Integral

Following proposition is the basic property of Itô Integral. The proof is similar to simple step process case.

Proposition 10.1 For $H, G \in \mathscr{L}^2_T$ and $a, b \in \mathbb{R}$:

(1) (Mean zero) $\mathbb{E}\left[\int_0^T H_t dB_t\right] = 0;$ (2) (Itô Isometry) $\mathbb{E}\left[\left(\int_0^T H_t dB_t\right)^2\right] = \mathbb{E}\left[\int_0^T |H_t|^2 dt\right];$ (3) (Linearity) $\int_0^T (aH_t + bG_t) dB_t = a \int_0^T H_t dB_t + b \int_0^T G_t dB_t.$

10.2 Itô Integral as a Stochastic Process

Consider $H \in \mathscr{L}^2_T$, for $t \in [0, T]$, we define a stochastic process

$$\mathcal{I}_t[H] := \int_0^t H_s \mathrm{d}B_s := \int_0^T H_s \mathbf{1}_{[0,t]}(s) \mathrm{d}B_s.$$

We call the process $(\mathcal{I}_t[H])_{t \in [0,T]}$ the indefinite integral of H with respect to B. Following theorem shows that Itô integral is a continuous martingale.

Theorem 10.2 Let $H \in \mathscr{L}^2_T$. Then the process

$$\xi_t = \int_0^t H_s dB_s$$

is a \mathscr{F}_t martingale.

Fall 2024

Proposition 10.3 Let $H \in \mathscr{L}^2_T$. Then the process

$$\eta_t = \left(\int_0^t H_s dB_s\right)^2 - \int_0^t H_s^2 ds$$

is a \mathscr{F}_t martingale.

Remark 10.4 In this lecture, we proved that Itô integral is a martingale. It is interesting that the converse is also true: Any martingale can be represented as an Itô integral. This result, called the martingale representation theorem, is important for many applications.